Geology of Nevada
(with an emphasis on Southern Nevada)

Jonathan G. Price
State Geologist and Director

Nevada Bureau of Mines and Geology
(www.nbmg.unr.edu)
Main Point:

Geology (including rocks types and how the rocks formed) is the key to understanding our mineral, energy, and water resources; our history; and our future as we face the challenges of natural hazards and growth.
Quick Review of Nevada Geologic History

Precambrian events (before 540 million years ago) – thrusting, folding, metamorphism, intrusions, sediments.
Archean (~2.5 billion years old) gneiss in metamorphic core complex, Angel Lake, East Humboldt Range
Clark County geology:

Precambrian rocks are in brown. These are mostly metamorphic and intrusive igneous rocks.
Miner’s shack in Proterozoic (~ 1.7 billion years old) gneiss in the Virgin Mountains
Quick Review of Nevada Geologic History

Precambrian events – thrusting, folding, metamorphism, intrusions, sediments.

Paleozoic (from 540 to 248 million years ago) — thrusting, folding, oceanic crust and sediments.
Refolded folds in gneiss in the Ruby Mountains
Clark County geology:

Paleozoic rocks are in blue and purple. These are mostly sedimentary rocks.
Paleozoic rocks are in blue and purple. These are mostly sedimentary rocks.

The rocks exposed on Frenchman Mountain (Sunrise Mountain) were tilted and slid into place from an area to the east, near the Grand Canyon.
Major Mines, Oil Fields, and Geothermal Plants

- Precious Metals
- Industrial Minerals
- Copper
- Oil Field
- Geothermal Plant
Paleozoic rocks as industrial minerals in Southern Nevada:

Limestone for lime and aggregate.

Gypsum for wallboard.
Lime kiln at Apex – lime (CaO) made from limestone (CaCO$_3$)
Quick Review of Nevada Geologic History

Precambrian events — thrusting, folding, metamorphism, intrusions, sediments.

Paleozoic thrusting, folding, oceanic crust and sediments.

Mesozoic (from 248 to 65 million years ago) — thrusting, folding, intrusion and volcanism.
Clark County geology:

Mesozoic rocks are in green. These are mostly sedimentary rocks as well.
Mesozoic rocks are in green. These are mostly sedimentary rocks as well.

Valley of Fire and Red Rock Canyon are two of the most spectacular areas of Mesozoic rocks in Southern Nevada.
Red Rock Canyon National Conservation Area (BLM)
Bonanza King Formation (Cambrian, ~520 million years old) limestone and dolomite

Aztec Sandstone (Jurassic, ~180 million years old)

alluvium (Quaternary, ~100,000 years old)
Bonanza King Formation (Cambrian, ~ 520 million years old) limestone and dolomite

Aztec Sandstone (Jurassic, ~ 180 million years old)

alluvium (Quaternary, ~ 100,000 years old)

(teacher's)

(teacher's) (not nearly that old)
Bonanza King Formation (Cambrian, ~ 520 million years old limestone and dolomite)

Aztec Sandstone (Jurassic, ~ 180 million years old)

alluvium (Quaternary, ~ 100,000 years old)

Normal strata:

Youngest sediments are deposited on the top.

Sediments stack up like filling a bucket with sand.

Oldest sediments are deposited on the bottom.
Bonanza King Formation (Cambrian, ~ 520 million years old limestone and dolomite)

Aztec Sandstone (Jurassic, ~ 180 million years old)

alluvium (Quaternary, ~ 100,000 years old)

But here we see the reverse at Red Rock Canyon:

Oldest sedimentary rocks were thrust on top of younger sedimentary rocks.

Youngest sediments fill valleys and alluvial fans.
Mesozoic rocks as industrial minerals in Southern Nevada:

Sandstone for making glass (bottles), building stone, and architectural aggregate.
Splitting flagstone at Rainbow Rock
Quick Review of Nevada Geologic History

Precambrian events – thrusting, folding, metamorphism, intrusions, sediments.

Paleozoic thrusting, folding, oceanic crust and sediments.

Mesozoic thrusting, folding, intrusion and volcanism.

Cenozoic (<65 million years old) — volcanism and intrusion, compression followed by crustal extension, faulting, including right-lateral strike-slip faulting.
Everything pink, red, and orange on the map is igneous.

There are ore deposits associated with many of the Mesozoic and Cenozoic intrusions.
We are in the midst of the biggest gold boom in American history. Mostly Carlin and other Nevada deposits = 186 M oz. '49ers = 29 M oz.
Mineral Deposits – nearly everywhere

Major Active Mines
X Metals (mostly Au, Cu, Ag)
X Industrial minerals
Cenozoic rocks as industrial minerals in Southern Nevada:

Gypsum for wallboard.

Alluvial gravels for aggregate.

Cenozoic and Mesozoic ores of gold, silver, lead, and zinc were mined in the past.
Gypsum in Miocene (~15 million years old) sediments east of Frenchman Mountain.
A blast on a Nevada Mining Association teachers’ workshop
Native American mining – obsidian, opal, chert for tools, salt for flavoring and preserving food, turquoise for ornaments
European/American History

1776: Francisco Carces – Spanish monks in southern Nevada – LA to Santa Fe

1848: Treaty with Mexico – Nevada becomes part of USA

1849: Gold discovered near Dayton by Mormon settlers

Paleozoic carbonates thrust over Mesozoic sandstones near Las Vegas: not much ore where there aren’t any igneous rocks.
European/American History

1776: Francisco Carces – Spanish monks in southern Nevada – LA to Santa Fe

1848: Treaty with Mexico – Nevada becomes part of USA

1849: Gold discovered near Dayton by Mormon settlers

1855: Potosi Mine – Zn-Pb-Ag-Au, Goodsprings district discovered by Mormons

1857: Nelson – Ag-Au
European/American History

1776: Francisco Carces – Spanish monks in southern Nevada – LA to Santa Fe

1848: Treaty with Mexico – Nevada becomes part of USA

1849: Gold discovered near Dayton by Mormon settlers

1855: Potosi Mine – Zn-Pb-Ag-Au, Goodsprings district discovered by Mormons

1857: Nelson – Ag-Au

1859: Discovery of the Comstock Lode – Ag-Au, Virginia City

1864: Statehood – Battle Born and the Silver State
The '49ers spread out across the west:
- Aurora (1860)
- Humboldt district (1860)
- Star and Buena Vista districts (1861)
The '49ers spread out across the west:

- Aurora (1860)
- Humboldt district (1860)
- Star and Buena Vista districts (1861)
- Reese River district – Austin (1862)
- Cortez (1863)
- Cherry Creek district (1863)
- Silver Peak (1863)
- Pioche (1863)
- Union district – Ione (1863)
The ’49ers spread out across the west:

- Aurora (1860)
- Humboldt district (1860)
- Star and Buena Vista districts (1861)
- Reese River district – Austin (1862)
- Cortez (1863)
- Cherry Creek district (1863)
- Silver Peak (1863)
- Pioche (1863)
- Union district – Ione (1863)
- Eureka (1864)
- Candelaria (1864)
- White Pine district – Ely (1865)
- Belmont (1865)
- Round Mountain (1865)
- Yerington (1865)
The ’49ers spread out across the west:

- Aurora (1860)
- Humboldt district (1860)
- Star and Buena Vista districts (1861)
- Reese River district – Austin (1862)
- Cortez (1863)
- Cherry Creek district (1863)
- Silver Peak (1863)
- Pioche (1863)
- Union district – Ione (1863)
- Eureka (1864)
- Candelaria (1864)
- White Pine district – Ely (1865)
- Belmont (1865)
- Round Mountain (1865)
- Yerington (1865)
- Battle Mountain (1866)
- Northumberland (1866)
- Manhattan (1866)
- Tuscarora (1867)
- Bald Mountain (1869)
A few notable discoveries were made in a later wave of exploration.

- Searchlight (1897)
- Tonopah (1900)
- Goldfield (1902)
Cenozoic (<65 million years old) volcanic rocks are in beige; intrusive igneous rocks are in pink; mostly Miocene (24 to 5 million-year old) sedimentary rocks are in bright yellow; Quaternary (<1.8 million-year old) alluvial sediments in pale yellow fill the upper parts of valleys.
Quaternary (~1 million-year old) cinder cone

Yucca Mountain

Black Cone in Crater Flat, Yucca Mountain in background to the east
Las Vegas

Yucca Mountain

Las Vegas
Nuclear waste is currently stored at reactors in many states.

<table>
<thead>
<tr>
<th>Storage Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Reactors (72 Sites in 33 States), including</td>
</tr>
<tr>
<td>▪ Naval Reactor Fuel (1)</td>
</tr>
<tr>
<td>▪ Operating Non-DOE Research Reactors (45)</td>
</tr>
<tr>
<td>▪ Commercial Spent Nuclear Fuel (Not at Reactor) (2)</td>
</tr>
<tr>
<td>▪ Shut Down Non-DOE Research Reactors with Spent Nuclear Fuel on Site (2)</td>
</tr>
<tr>
<td>▪ High-Level Radioactive Waste and DOE Spent Nuclear Fuel (10)</td>
</tr>
</tbody>
</table>

Modified from MAP999 tables hqcc.fh7
Issues at Yucca Mountain (human health over a one-million-year time period):

Earthquake hazards (shaking, faulting and fracturing)

Fluid flow (fractures, flow paths to springs, saturated and unsaturated flow)

Corrosion of containers

Volcanism

Transportation
Earthquake Hazards - Regional Tectonic Setting

- Red dots; BARGEN stations
- Green lines; Quaternary faults (Jennings, 1975; Dohrenwend et al., 1996)

Slide courtesy of Emma Hill
Earthquake Hazards - Local Tectonic Setting

The Yucca Mountain faults have very low geologic slip rates, 0.01 – 0.02 mm/yr (Simonds et al., 1995)

slide courtesy of Emma Hill
How active are the faults – from geologic, seismic, and geodetic perspectives?
looking north from the crest of Yucca Mountain
Comparison of GIPSY and GAMIT results

- Error ellipses are 95% confidence
- Velocities plotted relative to station TIVA (blue triangle)
- North American reference frame

slide courtesy of Emma Hill
Comparison of GIPSY and GAMIT results

- GIPSY velocities
- GAMIT velocities

RMS of velocity differences:
- 0.07 mm/yr for the east
- 0.11 mm/yr for the north

(Velocities plotted relative to TIVA in a NA reference frame. 95% confidence error ellipses.)

slide courtesy of Emma Hill
GIPSY results

Velocity difference for TIVA-BULL:
1.0 ± 0.1 mm/yr

(Velocities plotted relative to ECHO in a NA reference frame. 95% confidence error ellipses.)

slide courtesy of Emma Hill
GIPSY results

Velocity difference for TIVA-BULL:
1.0 ± 0.1 mm/yr

(Velocities plotted relative to ECHO in a NA reference frame. 95% confidence error ellipses.)

slide courtesy of Emma Hill
GIPSY results

Velocity difference for TIVA-BULL:
1.0 ± 0.1 mm/yr

(Velocities plotted relative to ECHO in a NA reference frame. 95% confidence error ellipses.)

slide courtesy of Emma Hill
Precarious rock on the crest of Yucca Mountain
Probability of an earthquake of magnitude 7.0 or greater occurring within 50 km in 50 years: ~2 to 6% chance for Yucca Mountain site (from USGS probabilistic seismic hazard analysis)
Yucca Mountain is underlain and surrounded by volcanic rocks, mostly >10 million years old.
Massive eruptions, as in the Cascades, are highly unlikely at Yucca Mountain.
The main volcanic issue at Yucca Mountain is the possibility of disturbance of the repository by intrusion (and extrusion) of basalt.

Easy Chair crater, Nye County, Nevada – one of several areas in Nevada with Quaternary basaltic cinder cones and lava flows
Quaternary cinder cones seen from the crest of Yucca Mountain
Black Cone
Red Cone

PROPOSED REPOSITORY

Black Cone
Red Cone

NEVADA
CALIFORNIA

LATHROP WELLS CINDER CONE

BULLFRO MOUNTAIN HILLS

BULLFRO MOUNTAIN HILLS

Beatty

CRATER FLAT

YUCCA MTN

PROPOSED REPOSITORY

LATHROP WELLS CINDER CONE

NEVADA
CALIFORNIA
Black Cone
Red Cone
NNE alignment of Quaternary (~ 1 million-year-old) basaltic volcanoes in Crater Flat

PROPOSED REPOSITORY
looking south at the Lathrop Wells cinder cone from the crest of Yucca Mountain
looking north at Lathrop Wells cinder cone, ~80,000 years old
Will there be a preferred NNE alignment of future eruptions?
Trench 14 – evidence of meteoric water having moved downward along fractures.
Directions of regional groundwater flow

Spring in Amargosa Valley
Commercial reactors

DOE sites

Transportation safety issues – rail and truck
On 9 August 2005, EPA released draft standards for radiation release at Yucca Mountain: 15 millirems per year in Amargosa Valley for the first 10,000 years and 350 millirems per year for the next 990,000 years.
On 9 August 2005, EPA released draft standards for radiation release at Yucca Mountain: 15 millirems per year in Amargosa Valley for the first 10,000 years and 350 millirems per year for the next 990,000 years.

For comparison,

chest x-ray = 10 millirem;

CT head scan = 4,000 to 6,000 millirem;

average background radiation = 300 millirem per year in the USA, 350 millirem per year in Amargosa Valley (near Yucca Mountain); and 700 millirem per year in Colorado;
On 9 August 2005, EPA released draft standards for radiation release at Yucca Mountain: **15 millirems per year** in Amargosa Valley for the first 10,000 years and **350 millirems per year** for the next 990,000 years.

- **underground uranium mining = 61 millirem/yr**;
- **nuclear reactor = 0.1 to 0.6 millirem/yr** (average annual dose to maximally exposed member of the public);
- **<25, 100, or 500 millirem/yr** for decommissioned nuclear facilities.
Climate changes through geologic time.

Hazen pit, Lyon County
(during Earth Science Week field trip – second full week of October)

Miocene (~ 15 million year old) fish in diatomite – evidence of wetter times in the past
Nevada has been dry (in terms of rain and snow) since about 3 to 6 million years ago, when the Sierra Nevada created a significant rain shadow.
Lake Las Vegas
Subsidence and fissuring in Las Vegas Valley
Calcite and gypsum, deposited from evaporating water, whitewash the volcanic rocks above Lake Mead.
Meadow Valley Wash, January 2005
(photo courtesy of Gale Fraser, Clark County Regional Flood Control District)
Virgin River at Mesquite, January 2005

Photo courtesy of Gale Fraser, Clark County Regional Flood Control District
Present-day tectonics: Nevada is part of the boundary between the Pacific and North American plates.
Red = fault ruptures during historical earthquakes (last 150 years)
Orange = Late Pleistocene faults (<130,000 years old)
Yellow = other Quaternary faults (<1.8 million years old)

There are active faults nearly everywhere in Nevada, but not everywhere.
Faults on the Kingman 1 x 2-degree sheet
Peak Acceleration (%g) with 2% Probability of Exceedance in 50 Years
USGS Map, Oct. 2002

Legend:
- 0
- 2
- 4
- 6
- 8
- 10
- 12
- 14
- 16
- 18
- 20
- 22
- 24
- 26
- 28
- 30
- 32
- 34
- 36
- 38
- 40
- 42
- 44
- 46
- 48
- 50
- 52
- 54
- 56
- 58
- 60
- 62
- 64
- 66
- 68
- 70
- 72
- 74
- 76
- 78
- 80
- 82
- 84
- 86
- 88
- 90
- 92
- 94
- 96
- 98
- 100
- 102
- 104
- 106
- 108
- 110
- 112
- 114
- 116
- 118
- 120
- 122
- 124

Map Area:
- 32°N
- 34°N
- 36°N
- 38°N
- 40°N
- 42°N

Longitude:
- 124°W
- 122°W
- 120°W
- 118°W
- 116°W
- 114°W
- 112°W

Latitude:
- 124°W
- 122°W
- 120°W
- 118°W
- 116°W
- 114°W
- 112°W
Shaking Potential Map for Nevada

Possible Shaking in Peak Acceleration (percent of gravity)

120% 100% 80% 60% 50% 40% 30% 20% 18% 16% 14% 12% 10%

Possible Maximum Modified Mercalli Intensity*

IX VIII VII

* See page 4 for descriptions of Intensity VII and VIII. In Intensity IX, general panic occurs and there may be damage to some well-built structures.
Faults on the Death Valley 1 x 2-degree sheet
Faults on the Las Vegas 1 x 2-degree sheet
Quaternary faults in Las Vegas Valley
Quaternary fault exposed at construction site in Las Vegas Valley
Unit 1 does not appear to be cut by the fault

Unit 2 = wedge of sediment deposited against the fault

Unit 3

Unit 4

Unit 5

Quaternary fault exposed at construction site in Las Vegas Valley
Measured earthquakes in the Las Vegas area.
The risks are huge.

For a magnitude 6.6 earthquake on the Frenchman Mountain fault, HAZUS estimated:

$4.4 to 17.7 billion in economic loss

major damage to approximately 30,000 buildings

3,000 to 11,000 people needing public shelter

200 to 800 fatalities.
For a magnitude 5.9 daytime earthquake on the Frenchman Mountain fault, HAZUS estimated, for all of Clark County:

$2.2 to 8.9 billion in economic loss,
 of which $1.2 to 4.7 billion would be in building damage,
 $0.3 to 1.3 billion would be in damage to building contents, and
 $0.7 to 2.9 billion in business interruption losses related to the building stock;

major damage to 4,000 to 17,000 buildings
 (655 completely destroyed),
3,000 to 12,000 people needing public shelter,
300 to 1,200 people needing hospital care (but only 768 of 2,341 beds
 would be available in the county during the first day, up to 910 at Day 3 and
 1,730 at Day 30); and
80 to 300 fatalities.
 (Casualty numbers are expected to be less for either a night-time or
 commute-time earthquake.)

(from NBMG-NDEM-FEMA-sponsored earthquake exercise for the City of Las Vegas, 2003)
Probability of an earthquake of magnitude 6.0 or greater occurring within 50 km in 50 years (from USGS probabilistic seismic hazard analysis)

10-20% chance for Las Vegas area, magnitude 6
1. The earthquake risks are huge in Nevada.

2. We can do something about it.
 a. Be prepared to respond.
 b. Mitigate structural risks, largely through building codes and avoiding faults and areas of liquefaction.
 c. Mitigate nonstructural risks.
Nonstructural damage often can be easily prevented.
Earthquake-secure bookshelves in the office of the State Geologist
Secured computers at the
Clark County Building Department
The Las Vegas urban area is growing in population at a rate of 9 to 10 people per hour and in area of developed land at a rate of 2 acres per hour.
Geodetic data indicate that we are only gaining about 1.5 acres of area per year through crustal extension.
Where are those 1.5 acres on the Strip?
Main Point:

Geology (including rocks types and how the rocks formed) is the key to understanding our mineral, energy, and water resources; our history; and our future as we face the challenges of natural hazards and growth.
Nevada Bureau of Mines and Geology
(www.nbmg.unr.edu)